Электронная удочка

В середине прошлого века Ю.Сверчков сконструировал электронную удочку с источником питания, вмонтированным в корпус. Электроника позволила рыболову-зимнику ловить рыбу мормышками, избавив его от утомительной многочасовой механической работы.

Тогда мною тоже была изготовлена и испытана эта удочка.

Эксперименты позволили удостовериться, что безнасадочным способом можно очень успешно ловить рыбу и даже стабильно облавливать рыболовов, подсаживающих наживки на крючки мормышек.

Для изготовления электронной удочки пригоден практически любой «радио мусор».

Схема приведена на рис.1, элементы конструкции и их номиналы сведены в спецификацию.

Современное состояние электроники позволяет применять малогабаритные электронные компоненты, к примеру, «чиповские» резисторы и конденсаторы, микротранзисторы.

Особенность конструкции – перемотка обмотки реле Р1 (20 метров провода ПЭЛ - 0,41- 0,44 мм). Перемотка обмотки производится виток к витку. В авторском варианте применены устаревшие транзисторы VT1 - П8-П11, VT2 - П13-П16. Их следует заменить современными: VT1 - КТ315Д, VT2 - КТ361Д.

Применимы и транзисторы КТ3102 (VT10) и КТ3107 (VT2). Из «чиповских» транзисторов хорошей заменой могут быть транзисторы КТ3129, КТ3130, КТ3153. Пригодны для замены и КТ315Г1, КТ361Б2.

Электронную плату необходимо смонтировать вертикально, рядом с R1. На свободное место мною была установлена вторая батарея питания, включенная в параллель с первой. Переделка позволила увеличить время непрерывной работы удочки до 10 часов.

Заливка электронной платы эпоксидным компаундом, смешанным с наполнителем (мелкие фракции полистирола) в пропорции 50:50, резко увеличила термозащиту схемы, изолировала ее от влаги, предохранила от повреждений при ударах об лед.

Амплитуда колебаний хлыстика в исходной конструкции регулируется механическим способом, что крайне нежелательно, т.к. наблюдаются сбои в работе конструкции на морозе (при оледенении).

Электронную регулировку амплитуды можно выполнить в соответствии с рис.2. Деталировка и номиналы элементов схемы сведены в спецификацию.

На практике схема оказалась не защищенной и от неправильного включения батареи питания, что приводит к выходу из строя транзисторов VT1 и VT2. Недоработка легко устраняется в соответствии с рис.3 и примечанием к нему.

Все же на морозе работа удочки становится «вялой» и затем колебания хлыстика прекращаются – замерз электролит в батарее питания. «Вылечить» же удочку просто. Надо увеличить размер корпуса до 320 мм в длину, а сам корпус изготовить из фторопластовой трубки диаметром 34 мм с толщиной стенки 2 мм.

В таком корпусе удается разместить четыре батарейки типа АА-R6-1,5v, соединив их параллельно. Можно применить и один аккумулятор малогабаритный (RZР2) с напряжением 2 вольта и емкостью 0,5 А/ч.

В таком исполнении непрерывная работа удочки превышает 50 часов, что более чем достаточно для любой зимней рыбалки. Но и достигнутое меня не удовлетворило, т.к. батарея питания все же отказывала при температуре воздуха ниже минус 12-15 градусов.

Устранить отмеченные недостатки удалось сравнительно просто: к плате, на которой установлен электромагнит (Р1), надо подклеить эластичную мембрану со стороны нерабочего торца реле. Плата помещается в корпус, а внутрь корпуса засыпается измельченный пенопласт.

Затем на свое место устанавливается батарея питания и теплоизолируется дополнительным трубчатым корпусом (из пенопласта) с наружным диаметром 60 мм, надеваемым с некоторым усилием на торец фторопластового корпуса.

В таком исполнении все элементы электронной схемы и батарея питания работают на любом морозе без единого сбоя. Кстати, обмотку реле (Р1) крайне желательно также пропитать эпоксидным компаукдом, что защищает обмотку реле от влаги и повреждений.

В свое время отечественная промышленность выпустила серийно электронную удочку по схеме Ю.Сверчкова. Полагаю, многие рыболовы имеют ее, но… в плачевном состоянии. Из сказанного ясно, что работоспособность удочки может быть легко восстановлена, а модернизация устройства также не составит большого труда.

Резко увеличить надежность устройства можно, изготовив дополнительную плату более совершенного блока питания, т.н. трансвертора. Схема позволяет использовать практически любые элементы питания: R6, R10, R14, R20…

Особенность трансвертора – сохранение работоспособности электронной удочки практически до полного разряда батареи питания (1 вольт) и возможность получения на выходе трансвертора двух разнополярных напряжений (до +7В и более).

Схема трансвертора приведена на рис.4 Деталировка и номиналы указаны на схеме. Кстати, защиту платы трансвертора желательно также выполнить заливкой эпоксидным компаундом, в соответствии с приведенной ранее рекомендацией.

В схеме трансвертора хорошо работают отечественные транзисторы КТ203В (VT2) и КТ602Б (VT1). Чашки броневого сердечника необходимо стянуть любой резьбовой стяжкой, изготовленной из латуни. Выходное напряжение трансвертора зависит от числа витков обмоток трансформатора ТР1.

За основу можно принять: w1 - 15 витков провода ПЭЛ-0,33 мм; w2 - аналогично 1; w3 - 6 витков провода ПЭЛ-0,33 мм. Подбором числа витков w1 и w2 можно установить любые разнополярные напряжения на выходе схемы, но проще применить стабилизатор на микросхемах серий АMS 1117, LD 1117А, IL 1117А, выполненных в корпусах Д-Раск.

К примеру, для нашего случая подходят микросхемные стабилизаторы IL 1117А – Adj (1,25 вольта) и IL 1117А – 1,8 (1,8 вольта). Можно применить и аналог (R1254ЕНхх). Стабилизатор желательно установить на продолговатый алюминиевый теплоотвод, что обеспечит хороший приток тепла в корпус электронной удочки…

Применение стабилизаторов обеспечивает стабильные параметры схемы электронной удочки (частота колебаний и амплитуда колебаний), не зависящие от напряжения батареи питания.

В дальнейшем трансвертор позволяет рыболову модернизировать свою «кормилицу», применив в схеме электронной удочки микросхемные операционные усилители, компараторы или микросхемы КМОП или ТТЛ логики.

Но начинать все же лучше с транзисторной схемы, т.к. значительным опытом электронщика не обладают, к сожалению, многие рыболовы, в т.ч. и рыболовы-спортсмены. Для подготовленных читателей даю справку: номиналы броневого сердечника Б18, из феррита марки М1500НМ3, следующие: КN=4, AL=250.

Скажу сразу: изготовление электронных удочек – дело не менее интересное и сложное, чем создание космических аппаратов. Дело в том, что возможности рыболова не ограничены схемными решениями.

Сегодня очень просто изготовить электронную схему, вырабатывающую электрические колебания с частотами, равными многим миллионам колебаний в секунду. Но электромагнитные преобразователи изначально не могут воспроизвести и менее значительные диапазоны частот.

Так, верхний уровень частот, воспроизводимых, к примеру, реле марки РКМ ограничен величиной 300-400 колебаний в минуту, т.е. равен 5-6 Гц (с учетом веса хлыстика). Сложен и механизм передачи колебаний от хлыстика к мормышке, т.к. даже жесткие современные лески – это все же не идеальные «стержни» сверхмалого диаметра, практически не сжимающиеся и не растягивающиеся.

В реальной практике на леску действует и трение воды, увеличивающееся при росте частоты и амплитуды колебаний мормышки, что требует от конструктора увеличения мощности преобразователей и питания.

Совершенно непригодны для оснастки электронных удочек мягкие зимние лески. Мечта рыболова-»электронщика», конечно, очень жесткая тонкая леса с большим разрывным усилием.

Понятно, что вес и размеры мормышки также входят в противоречие с практикой. В идеале рыболову нужны маленькие, легкие мормышки, но загнать их на глубину весьма проблематично.

Еще хуже достигнуть гармонии снасти, когда применяются тандемы из мормышек или других обманок, особенно значительного веса.